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determinants of order two and three within a specific subclass of functions.

Keywords: coefficient bounds; inverse function; univalent function; Hankel determinant.

https://mjms.upm.edu.my
https://orcid.org/0009-0006-0692-6682
https://orcid.org/0000-0001-6425-4083


I. R. Silviya and K. Muthunagai Malaysian J. Math. Sci. 19(2): 673–689(2025) 673 - 689

1 Introduction and Definitions

LetH(D) represent the set of holomorphic (analytic) functions within D, the unit disk and the
unit disk D consists of all points z ∈ C such that |z| < 1. Let,

A :=
{
f(z) ∈ H(D) : f(z) = z +

∞∑
n=2

anz
n, z ∈ D, f(0) = f ′(0)− 1 = 0

}
, (1)

and

S =
{
f(z) ∈ A : f(z1) = f(z2) =⇒ z1 = z2

}
. (2)

Consider an analytic function u defined in D such that u(0) = 0 and |u(z)| < 1 for all z ∈ D. If we
have,

F1(z) = F2(u(z)) for z ∈ D,

then, F1 is subordinate to F2, denoted as F1 ≺ F2. Here, u is known as a Schwarz function.

In 1985, De Branges [9]made a significant breakthrough by proving the Bieberbach conjecture.
He showed that for f ∈ S, the coefficients an satisfy the inequality |an| ≤ n, ∀ n ≥ 2 . This finding
provided a strong mathematical foundation to understand the coefficients of univalent functions
in complex analysis.

The researchers examined a wide range of subclasses of S associated with various picture do-
mains before Bieberbach could solve the conjecture. The families of starlike and convex functions,
represented by S∗ and C respectively, are among themost familiar subsets of the set of all univalent
functions S. The subclasses S∗ and C are defined as follows:

S∗ =
{
f ∈ S : R

(zf ′(z)

f(z)

)
> 0, z ∈ D

}
,

C =
{
f ∈ S : R

( (zf ′(z))′

f ′(z)

)
> 0, z ∈ D

}
.

By defining f(z) = z, we establish the subclass BT of bounded turning functions as follows:

BT = {f ∈ S : f ′(z) > 0 for all z ∈ D}.

In [24], using subordination, Ma and Minda classes S∗(φ), C(φ), and BT (φ) are defined in the
following manner:

S∗(φ) =
{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
,

C(φ) =
{
f ∈ A :

(zf ′(z))′

f ′(z)
≺ ϕ(z)

}
,

BT (φ) =
{
f ∈ A : f ′(z) ≺ φ(z)

}
.

In recent years, researchers have explored other image domains φ(D) and studied several classes
of univalent functions, including C(φ), S∗(φ), and BT (φ). For instance, the class S∗

L = S∗(
√
1 + z)

defined by fixing φ(z) = (1 + z)1/2 was investigated in [34] by Sokol and Stankiewicz. The class
S∗
ez has been introduced and studied in [25]. Cho et al. [8] studied a class S∗

sin by selecting
φ(z) = 1 + sin z. Sakar and Güney [30] studied the m-fold symmetric analytic functions and
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determined coefficients for analytic bi-univalent functions using fractional calculus through the
application of Faber polynomial expansion. In 2021, Barukab et al. [5] studied the Hankel deter-
minant of order three for,

Rs :=
{
f ∈ A : zf ′(z) ≺ 1 + sinh−1 z,∀ z ∈ D

}
.

Sharma et al. [31] introduced a subclass of starlike functions S∗
car defined by,

S∗
car :=

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 +

4

3
z +

2

3
z2, z ∈ D

}
.

The class of starlike functions characterized by,

S∗ :=

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 + zez = ℘(z), ∀ z ∈ D

}
,

was introduced and examined by Kumar et al. [18]. Srivastava et al. [33] recently investigated
precise constraints for the coefficients of a subclass of functions with bounded turning within a
cardioid-shaped domain.

The Hankel determinantΨq,m(f), for q,m ∈ N, involving the coefficients of the function f ∈ S,
is given by,

Ψq,m(f) =

∣∣∣∣∣∣∣∣∣
am am+1 · · · am+q−1

am+1 am+2 · · · am+q

...
...

...
...

am+q−1 am+q · · · am+2q−2

∣∣∣∣∣∣∣∣∣ .
This determinant was studied by Pommerenke [26, 27]. We can obtain different determinants by
modifying the parameters q and m, as shown below,

Ψ2,1(f) = a3 − a22,

Ψ2,2(f) = a2a4 − a23,

Ψ3,1(f) = 2a2a3a4 − a33 − a24 + a3a5 − a22a5.

(3)

These determinants are commonly designated as the first, second, and third determinants of the
Hankel matrix. It plays an important role in the study of power series with integral coefficients
and singularities [10] . Research has been done on the upper bound of |Ψq,m(f)| for different
subclasses of univalent functions. The Hankel determinant Ψ2,1(f) is recognized as the Fekete-
Szegö inequality. The subclass of normalized analytic functions whose positive derivative has a
positive real part was studied in [14] . The constraints of the functional Ψ2,2(f) obtained in [15]
for each of the sets C and S∗ were sharp. Rehman et al. [28] estimated the second order Hankel
determinant for the subclass of bi-close-to- convex function of complex order.

The estimation ofΨ3,1(f) seems to be little harder as compared toΨ2,2(f). In 2010, Babalola [4]
established the maximum value of |Ψ3,1(f)| for the families C, S∗ and BT . The upper bound for
the third Hankel determinant of Basilevic functions was derived in [2]. In the subsequent years,
numerous researchers were able to obtain non-sharp constraints for |Ψ3,1(f)| of various subclasses
of univalent functions. The sharp estimates of determinant over the class S∗ was investigated by
Cho et al. [7]. A subclass of starlike function connected with a domain bounded by an epicycloid
with n− 1 cusps was determined in [32].

The work [22] also investigated sharp extremum for the Hankel determinant of order three,
for specific subclasses of convex functions, starlike functions, and functions for bounded turning.
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The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1
2
was

investigated [21]. Zaprawa et al. [36] also studied the third Hankel determinant for starlike func-
tions. Hankel determinants for starlike and convex functions associated with sigmoid functions
was studied [29]. In [35], the third and fourth Hankel determinants were derived for the class of
functions with bounded turning related to Bernoulli’s lemniscate in the year 2022.

The 1/4-theorem of Koebe guarantees the existence of the inverse function, f−1 for every uni-
valent function f defined in the unit disc D, and its Taylor series representation is,

f−1(w) := w +

∞∑
n=2

Bnw
n, (|w| < 1/4). (4)

We get from the equation f(f−1(w)) = w that,

B2 = −a2,

B3 = −a3 + 2a22,

B4 = −a4 + 5a2a3 − 5a32,

B5 = −a5 + 6a2a4 − 21a22a3 + 3a23 + 14a42.

(5)

Studying the behaviour of the inverse function has drawn more attention from scholars in recent
years. Libera et al. [23] established a connection between the coefficients of f and f−1 for functions
f as in (1), assuming f(D) forms a convex region. Conversely, Kapoor and Mishra [16] expanded
upon the findings of Krzyz et al. [17] by establishing upper limits for the initial coefficients of the
inverse function f−1 when f ∈ S∗(α) with 0 ≤ α < 1. Ali [1] obtained accurate limits for the
initial coefficients of inverse functions for the class of extremely starlike functions. Gandhi [13]
defined another type of starlike functions with,

S∗
3l :=

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 +

4

5
z +

1

5
z4, z ∈ D

}
.

In a similarmanner, Arif et al. [3] examined a subclass of bounded turning functions characterized
as,

BT 3l :=

{
f ∈ A : f ′(z) ≺ 1 +

4

5
z +

1

5
z4, z ∈ D

}
.

In their work, Kumar et al. [19] provided an estimation for the optimal upper bound of the third
Hankel determinant for the inverse of functions whose derivatives have a positive real part.

Inspired by Srivastava et al. [33], we now analyse a subclass of bounded turning functions
defined by:

BT car := {f ∈ A : f ′(z) ≺ 1 + zez := ℘(z), z ∈ D} ,

in order to determine the sharp bounds on initial coefficients for the inverse, the Fekete-Szegö
inequality, and |Ψ3,1(f

−1)| for functions in the class BT car. Geometrically, each f ∈ BT car maps
the open unit disk into a cardoid-shaped domain, which is symmetric about the real axis, as shown
in Figure 1.
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Figure 1: Cardoid domain ℘(z) = 1 + zez .

Obviously the class BT car is not empty as f(z) = z ∈ A will be a trivial member of BT car.
That is because by the definition of subordination we can find a function ϕ(z) such that
f ′(z) = ℘(ϕ(z)) = 1 + ϕ(z)eϕ(z) with ϕ(z) = 0. As an example, consider the function
f(z) = z + az2 ∈ A. Then, f ′(z) = 1 + 2az. Figure 2 is the pictorial representation of f ′(z) ≺ ℘(z)

with a =
1

6
.

Figure 2: Pictorial representation of f ′(z) ≺ ℘(z) when a = 1/6.

The function ℘(z) = 1 + zez is holomorphic as it is a combination of holomorphic functions.
The derivative of ℘(z) is given by,

℘′(z) = (1 + z)ez.

In the unit disk D, neither ez = 0 nor z = −1 and so ℘′(z) is never zero in D. By the inverse
function theorem, this implies that ℘(z) is injective in D. Since ℘(z) = 1+ zez is both holomorphic
and injective in the unit disk D, it follows that ℘(z) is univalent in D.

Also choosing z = eiθ, θ ∈ [0, 2π],

R(℘′(z)) = R(ecos θ+i sin θ(1 + cos θ + i sin θ)),

R(℘′(z)) = R(ecos θei sin θ(1 + cos θ + i sin θ)) > 0.
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If f ∈ BTcar and if R(℘(z)) > 0 in D, then R(f ′(z) > 0 in D [11] (i.e.) f(z) belongs to a subclass
of the close-to-convex functions. Therefore, f(z) is univalent in D and consequently f−1(z) exists
for all z ∈ D.

2 Preliminaries

Let,

P =
{
p(z) = 1 +

∞∑
n=2

cnz
n ∈ H(D), z ∈ D, R(p(z)) > 0

}
. (6)

Consider p ∈ P as a Carathéodory type function. The fundamental lemmas outlined below form
the foundation of our findings.

Lemma 2.1. Carathodory’s Lemma[6]. Given that p ∈ P has the expansion in (6),

|ct| ≤ 2, (7)

for t ≥ 1.

Lemma 2.2. [20] Let p ∈ P be obtained from (6) with c1 ≥ 0. Then, we have,

2c2 = c21 + b(4− c21), (8)
4c3 = c31 + 2(4− c21)c1b− c1(4− c21)b

2 + 2(4− c21)(1− |b|2)δ, (9)

8c4 = c41 + (4− c21)b

[
c21

(
b2 − 3b+ 3

)
+ 4b

]
− 4(4− c21)(1− |b|2)

[
c1(b− 1)δ + b̄δ2 − (1− |δ|2)ρ

]
,

(10)

with |b| ≤ 1, |δ| ≤ 1 and |ρ| ≤ 1.

Following is the lemma stated as Lemma 2 in [12].

Lemma 2.3. [12] Let ω(z) =
∞∑

n=1

wnz
n be a Schwarz function. Using real numbers β and v, we obtain,

Π(ω) =
∣∣w3 + βw1w2 + vw3

1

∣∣ ≤ Π(β, v). (11)

where Π(β, v) is expressed as,

Π(β, v) =



1, (β, v) ∈ D1

⋃
D2

⋃
{(2, 1)},

|v|, (β, v) ∈
7⋃

k=3

Dk,

2

3
(|β|+ 1)

√
|β|+ 1

3(|β|+ 1 + v)
, (β, v) ∈ D8

⋃
D9,

1

3
v(

β2 − 4

β2 − 4v
)
√

ββ2−4
3(v−1) , (β, v) ∈ D10

⋃
D11 \ {(2, 1)},

2

3
(|v| − 1)

√
β − 1

3(|β| − 1− v)
, (β, v) ∈ D12,

(12)

and

678



I. R. Silviya and K. Muthunagai Malaysian J. Math. Sci. 19(2): 673–689(2025) 673 - 689

D1 = {(β, ν) : |β| ≤ 1

2
, −1 ≤ ν ≤ 1},

D2 =

{
(β, ν) :

1

2
≤ |β| ≤ 2,

4

27
(|β|+ 1)3 − (|µ|+ 1) ≤ ν ≤ 1

}
,

D3 = {(β, ν) : |β| ≤ 1

2
, ν ≤ −1},

D4 = {(β, ν) : |β| ≥ 1

2
, ν ≤ −2

3
(|β|+ 1)},

D5 = {(β, ν) : |β| ≤ 2, ν ≥ 1},

D6 =

{
(β, ν) : 2 ≤ |β| ≤ 4, ν ≥ 1

12
(β2 + 8)

}
,

D7 =

{
(β, ν) : |β| ≥ 4, ν ≥ 2

3
(|β| − 1)

}
,

D8 =

{
(β, ν) :

1

2
≤ |β| ≤ 2, −2

3
(|β|+ 1) ≤ ν ≤ 4

27
(|β|+ 1)3 − (|β|+ 1)

}
,

D9 =

{
(β, ν) : |β| ≥ 2, −2

3
(|β|+ 1) ≤ ν ≤ 2|β|(|β|+ 1)

β2 + 2|β|+ 4

}
,

D10 =

{
(β, ν) : 2 ≤ |β| ≤ 4,

2|β|(|β|+ 1)

β2 + 2|β|+ 4
≤ ν ≤ 1

12
β2 + 8

}
,

D11 =

{
(β, ν) : |β| ≥ 4,

2|β|(|β|+ 1)

β2 + 2|β|+ 4
≤ ν ≤ 2|β|(|β| − 1)

β2 − 2|β|+ 4

}
,

D12 =

{
(β, ν) : |β| ≥ 4,

2|β|(|β| − 1)

β2 − 2|β|+ 4
≤ ν ≤ 2

3
(|β| − 1)

}
.

Lemma 2.4. [12] For every p ∈ P and given any complex number κ, it follows that,∣∣ci+j − κcicj
∣∣ ≤ 2max{1, |2κ− 1|}. (13)

3 Bounds of Inverse Coefficients for the Family BT car

The sharp bounds of the inverse initial coefficients for the functions in the class BT car are
discussed in this section.

Theorem 3.1. If the function f ∈ BT car can be expressed as in (1).Then,∣∣B2

∣∣ ≤ 1

2
,

∣∣B3

∣∣ ≤ 1

3
. (14)

These bounds are sharp.

Proof. By the definition of f ∈ BT car and by applying the subordination principle, there is a
Schwarz function that fulfills the condition,

f ′(z) ≺ 1 + ω(z)eω(z), z ∈ D.
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Following this assumption,

ω(z) = ω1z + ω2z
2 + ω2z

3 + . . . , z ∈ D, (15)

p(z) =
1 + ω(z)

1− ω(z)
= 1 + c1z + c2z

2 + c3z
3 + . . . , z ∈ D. (16)

Clearly, we have p ∈ P and,

ω(z) =
p(z)− 1

p(z) + 1
=

c1z + c2z
2 + c3z

3 + c4z
4 + . . .

2 + c1z + c2z2 + c3z3 + c4z4 + . . .
, z ∈ D (17)

Using (1), it is noted that,

f ′(z) = 1 + 2a2z + 3a3z
2 + 4a4z

3 + 5a5z
4 + . . . (18)

By simple computation and using (17), we get,

1 + ω(z)eω(z) = 1 +
1

2
c1z +

1

2
c2z

2 +

(
− 1

16
c31 +

1

2
c3

)
z3 +

(
1

24
c41 −

3

16
c21c2 +

1

2
c4
)
z4 + . . . (19)

By comparing (18) and (19), we get,

a2 =
1

4
c1, (20)

a3 =
1

6
c2, (21)

a4 =
1

8

(
−1

8
c31 + c3

)
, (22)

a5 =
1

10

(
1

12
c41 −

3

8
c21c2 + c4

)
. (23)

Substituting (20)–(23) in (5), we get,

B2 = −1

4
c1. (24)

B3 =
1

8
c21 −

1

6
c2. (25)

B4 =
5

4
c1c2 −

4

64
c31 −

1

8
c3. (26)

B5 =
11

480
c41 −

29

160
c21c2 +

3

16
c1c3 +

1

12
c22 −

1

10
c4. (27)

The bounds forB2 andB3 directly follow from Lemma 2 [12]. Bounds ofB2 andB3 are illustrated
in Figure 3.

Theorem 3.2. Let f represented by (1) belong to BT car, then, for γ ∈ C,∣∣∣B3 − γB2
2

∣∣∣ ≤ 1

3
max

{
1,
∣∣∣2− 3γ

4

∣∣∣} . (28)

This inequality is sharp given by,

f1(z) =

∫ z

0

(1 + tet)dt = z +
1

2
z2 +

1

3
z3 + ...., z ∈ D, (29)

f2(z) =

∫ z

0

(1 + t2et
2

)dt = z +
1

3
z3 + ...., z ∈ D. (30)

680



I. R. Silviya and K. Muthunagai Malaysian J. Math. Sci. 19(2): 673–689(2025) 673 - 689

Figure 3: Pictorial representation of f1(z) = z + 0.333z2 + 0.2105z3 + . . . .

Proof. Employing (24) and (25), we may write,∣∣∣B3 − γB2
2

∣∣∣ = 1

6

∣∣∣(c2 − 3
(2− γ

8

)
c21

)∣∣∣. (31)

Usage of (13) leads to, ∣∣∣B3 − γB2
2

∣∣∣ ≤ 1

3
max

{
1,
∣∣∣2− 3γ

4

∣∣∣} ,

and the conclusion follows directly.

Applying γ = 1, the inequality is derived as mentioned below.

Corollary 3.1. If the series expansion of f is (1) and f is in BT car, then,∣∣∣B3 −B2
2

∣∣∣ ≤ 1

3
. (32)

Theorem 3.3. Let f represented by (1) belong to BT car, then, the following inequality is satisfied,∣∣B2B3 −B4

∣∣ ≤ 5

8
.

Proof. Using (24) and (25), we have,∣∣B2B3 −B4

∣∣ = 1

8

∣∣∣∣c3 − 4

3
c1c2 +

1

4
c31

∣∣∣∣. (33)

From (19) and (20) it is noted that,

c1 = 2ω1, (34)
c2 = 2(ω2 + ω2

1), (35)
c3 = 2(ω3 + 2ω1ω2 + ω3

1). (36)

Hence, we obtain, ∣∣B2B3 −B4

∣∣ = 2

8

∣∣∣∣ω3 −
2

3
ω1ω2 + 5ω3

1

∣∣∣∣.
681
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Taking β =
−2

3
; v =

5

2
, it is understood that (β, v) ∈ D5. Using Lemma 2.4, we easily obtain,

∣∣B2B3 −B4

∣∣ ≤ 5

8
.

Theorem 3.4. Let f represented by (1) belong to BT car, then,∣∣Ψ2,2(f
−1)

∣∣ ≤ 1

9
.

The sharpness is given by (29).

Proof. It is to be noted that,

Ψ2,2(f
−1) =

∣∣B2B4 −B2
3

∣∣. (37)

From (24)−(26) we have,

Ψ2,2(f
−1) = − 1

96
c21c2 +

1

32
c1c3 −

1

36
c22. (38)

Utilizing (8) and (9) to represent c2 and c3 in terms of c1, and noting that c1 can be denoted as c
where 0 ≤ c ≤ 2, the expression obtained is,

∣∣∣Ψ2,2(f
−1)

∣∣∣ = 1

4

∣∣∣∣∣−5c4

288
− 4c2x(4− c2)

288
− c2(4− c2)x2

32
+

2c(4− c2)(1− |x2)σ

32
− x2(4− c2)2

36

∣∣∣∣∣.
(39)

Next, considering |σ| ≤ 1, |x| = t ≤ 1 and taking c ∈ [0, 2], we apply the triangle inequality to
obtain,∣∣∣Ψ2,2(f

−1)
∣∣∣ = 1

4

{
5c4

288
+

4c2t(4− c2)

288
+

c2(4− c2)t2

32
+

2c(4− c2)(1− |t2)σ
32

+
t2(4− c2)2

36

}
= Φ(c, t). (40)

When differentiating with respect to the parameter t, we get,

∂Φ

∂t
=

1

4

{
c2(4− c2)

72
+

tc2(4− c2)

144
− tc(4− c2)

8
+

t(4− c2)2

18

}
≥ 0, (41)

where t ∈ [0, 1], it follows that Φ(c, t) ≤ Φ(c, 1). Substituting t = 1 yields,

∣∣∣Ψ2,2(f
−1)

∣∣∣ ≤ 1

4

{
5c4

288
+

13c2(4− c2)

288
+

(4− c2)2

36

}
:= χ(c). (42)

Clearly χ′(c) ≤ 0. This indicates that χ is a function that decreases over [0, 2]. Its maximum value
is reached for c = 0. This implies, ∣∣∣Ψ2,2(f

−1)
∣∣∣ ≤ 1

9
. (43)
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Theorem 3.5. If f ∈ BT car has the form (1), then,

|Ψ3,1(f
−1)| ≤ 0.03807.

Proof. According to the definition, Ψ3,1(f
−1) can be expressed as,

Ψ3,1(f
−1) = 2B2B3B4 −B3

3 −B2
4 +B3B5 −B2

2B5.

In virtue of (24)−(27), we obtain,

Ψ3,1(f
−1) =

1

69120

[
− 36c61 + 33c41c2 + 270c31c3 − 432c4c

2
1 + 720c1c2c3 − 640c32 − 1080c23

+ 1152c4c2 − 72c21c
2
2

]
.

Utilizing (8)–(10), and performing basic algebraic calculations, we obtain,

Ψ3,1(f
−1) =

1

69120

{
329

8
c61 + 288t2x3 − 80t3x3 + 72c21tx

2 + 18c41tx
3 − 981

4
c41tx

2 + 366c41tx

+
441

8
c21t

2x4 − 477

2
c21t

2x3 +
141

2
c21t

2x2 − 135

2
t2δ2(1− |x|2)

+ 72c21t(1− |x|2)(1− |δ|2)ρ− 72c31tx(1− |x|2)δ − 72c21tx̄(1− |x|2)δ2

+
639

2
c31t(1− |x|2)δ + 333c1t

2x2(1− |x|2)δ − 288t2|x|2(1− |x|2)δ2

− 887

4
c1t

2x(1− |x|2)δ + 288t2x(1− |x|2)(1− |δ|2)ρ

}
.

From the above expression, we have,

Ψ3,1(f
−1) =

1

69120

{
329

8
c61 + t

[
366c41x− 981

4
c41x

2 + 72c21x
2 + 18c41x

3 +
141

2
c21tx

2

+ t

[
−447

2
c21x

3 +
441

8
c21x

4 + 288x3 − 80tx3]

+

[(
639

2
− 72x

)
c31 − c1tx

(
887

4
− 333x

)]
(1− |x|2))δ

+
441

2

[
−16

49
c21x̄− t

(
|x|2 + 15

49

)]
(1− |x|2))δ2

+ 72
[
4tx+ c21

]
(1− |x|2)(1− |δ|2)ρ

}
.

Denoting t = 4− c2, c1 ↔ c and |ρ| ≤ 1, it is noted that,

Ψ3,1(f
−1) =

1

69120

[
329

8
c6 + (4− c2)

{
366c4x− 981

4
c4x2 + 18c4x3 + 72c2x2

+ (4− c2)

[
− 32x3 +

441

8
c2x4 − 287

2
x3c2 +

141

2
c2x2

]
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+

[(
639

2
− 72x

)
c3 − c(4− c2)x

(
887

4
− 333x

)]
(1− |x|2)δ

+
441

2

[
−16

49
c21x̄− (4− c2)(|x|2 + 15

49
)

]
(1− |x|2)δ2 + 72

[
4tx+ c21

]
(1− |x|2)(1− |δ|2)ρ

}
,

(44)

in which x, δ, ρ ∈ D̄, and taking modulus on both sides in above expression, we obtain,∣∣∣∣∣Ψ3,1(f
−1)

∣∣∣∣∣ ≤ µ(c, x, δ)

69120
, (45)

where

µ(c, x, δ) =
329

8
c6 + (4− c2)

{
366c4x+ c2

(
72− 981

4
c4
)
x2 + 18c4x3

+ (4− c2)

[
441

8
c2x4 +

(
32 +

287

2
c2
)
x3 +

141

2
c2x2

]
+

[(
639

2
− 72x

)
c3 + c(4− c2)x

(
887

4
− 333x

)]
(1− x2)δ

+
441

2

[
16

49
c2x+ (4− c2)

(
x2 +

15

49

)]
(1− x2)δ2 + 72

[
c2 + 4x(4− c2)

]
(1− x2)(1− δ2)

}
.

(46)

Now, we maximize the function Φ(c, x, δ)within the parallelepiped region given by
[0, 2]× [0, 1]× [0, 1], where x is in the interval [0, 1] and δ ∈ [0, 1].

A) On the vertices of the parallelepiped, we get,

µ(0, 0, 0) = µ(2, 0, 0) = µ(2, 1, 0) = µ(0, 0, 2) = 2632,

µ(0, 0, 1) = 1080, µ(0, 1, 0) = µ(0, 1, 1) = µ(0, 0, 2) = 512.

B) Next, taking into account the eight edges of the parallelepiped,

(i) When x = 1 ; δ = 0; and δ = 1 in (46),

µ(c, 1, δ) = 512 + 4466c2 − 1670c4 +
343

2
≤ 2632.

(ii) When c = 0 and δ = 0, we have the following,

µ(0, x, 0) = 1152x− 640x3 ≤ 2632, for x ∈ (0, 1).

(iii) For x = 0 and δ = 1we get,

µ(c, 1, δ) =
329

8
+ (4− c2)

[
639

2
c3 +

441

2
(4− c2)

15

49

]

=
329

8
c6 +

135

2
c4 + 1278c3 − 540c2 + 1080− 639

2
c5 ≤ 2632.
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(iv) When c = 0 and δ = 1, we have,

µ(0, x, 1) = 270 + 612x2 + 512x3 − 882x4 ≤ 2632.

(v) For c = 0 and x = 0, we obtain,

µ(0, 0, δ) = 1080δ2 ≤ 1080, for δ ∈ (0, 1)

(vi) Putting c = 0 & x = 1, we obtain,

µ(0, 1, δ) = 512.

(vii) When c = 2; for δ = 0 & δ = 1; x = 0; & x = 1we have,

µ(c, x, δ) = 2632.

(viii) x = 0 and δ = 0.

µ(c, 0, 0) =
329

8
c6 + 288c2 − 72c4, for c ∈ (0, 2)

≤ 2632.

C) We will now analyze the six faces of the parallelepiped.

(i) When c = 2, then µ(2, x, δ) = 2632 for x, δ ∈ (0, 1).

(ii) c = 0 in (46) leads to,

µ(0, x, δ) = 512x3 +
[
882x2 + 270 + 1152x

]
(1− x2)(1− δ2) ≤ 2632.

(iii) x = 0 in (46), then,

µ(c, 0, δ) =
329

8
c6 + (4− c2)

[639
2

c3δ +
441

2
(4− c2)

15

49
δ2 + 72(1− δ2)

]
µ(c, 0, δ) =

329

8
c6 + (4− c2)

[
639

2
c3δ + 270δ2 − 135

2
c2δ2 + 72c2 − 72c2δ2

]

=
329

8
c6 + (4− c2)

[
639

2
c3δ + 270δ2 + c2

(
72− 279

2
δ2
)]

≤ 329

8
c6 + (4− c2)

[
639

2
c3 + 270 + 72c2

]
≤ 2632.

(iv) Fixing x = 1 in (46), with c in (0, 2) and δ ∈ (0, 1) , it is evident that the function µ(c, 1, δ)
is not dependent on δ, as observed in B(i).

µ(c, 1, δ) ≤ 2632.
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(v) If we take δ = 0, with c ∈ (0, 2) and δ ∈ (0, 1) in (46),

µ(c, x, 0) =
329

8
c6 + (4− c2)

{
366c4x+ c2

(
72− 981

4
c2
)
x2 + 18c4x3

+ (4− c2)

[
441

2
c2x4 +

(
32− 287

2
c2
)
x3 +

141

2
c2x2

]
+ 72

[
c2 + 4x(4− c2)

]
(1− x2)

}

=
329

8
c6 + (4− c2)

{
1152x− 1152x3 + c4

[
366x− 441

2
x4 − 1263

4
x3 − 105

2
x2

]
+ c2

[
282x2 + 882x4 − 318x3 − 288x+ 72

]}

≤ 329

8
c6 + (4− c2)

{
−891

4
c4 + 636c2

}
≤ 2632.

(vi) On the face δ = 1 and for x ∈ (0, 1), from (46), we have,

µ(c, x, 1) =
329

8
c6 + (4− c2)

{
366c4x+ c2

(
72− 981

4
c2
)
x2 + 18c4x3

+ (4− c2)

[
441

8
c2x4 +

(
32− 287

2
c2
)
x3 +

141

2
c2x2

]
+

[(
639

2
− 72c2

)
c3 + c(4− c2)x(

887

4
− 333x)

]
(1− x2)

+
441

2

[
16

49
c2x+ (4− c2)

(
x2 +

15

49

)]
(1− x2)

}
=g(c, x), with c ∈ (0, 2) and x ∈ (0, 1).

A simple numerical computation gives the solution of the system ∂g

∂c
= 0 and ∂g

∂x
= 0 that lies

within the region (0, 2)× (0, 1). Consequently, there are no critical points when δ = 1.

D) Examining the interior of the parallelepiped with dimensions (0, 2)× (0, 1)× (0, 1). We have
∂ϕ

∂δ
= 0 if and only if,

δ0(c, x) =

639

2
c3 − 72c2x+ 1332cx2 − 887cx− 333c3x2 +

887

4
c3x

40c2x− c2 − 32x3c2 + 127x3 + 98x2 − 128x− 11

2

,

for (c, x) ∈ (0, 2) × (0, 1) and 40c2x − c2 − 32x3c2 + 127x3 + 98x2 − 128x − 11

2
̸= 0. Thus,

µ(c, x, 1) exhibits no critical points within the interior of the parallelepiped. Upon reviewing
above four cases, we find that,

max{µ(c, x, 1) : (c, x) ∈ [0, 2], x ∈ [0, 1], δ ∈ [0, 1]} = 2632.
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Expressions (45) and (46) yield the following,∣∣∣∣∣Ψ3,1(f
−1)

∣∣∣∣∣ ≤ 0.03807.

4 Conclusion

Although extensive research exists on Hankel determinants in geometric function theory, de-
termining the precise bound for the third Hankel determinant remains challenging. In this paper,
we examine a family of bounded turning functions, denoted by BT car, which are associated with
the cardoid domain. We addressed the challenge by obtaining exact results for the coefficients of
the inverses of these functions. This finding enhances our comprehension of the geometric features
of this type of functions. By refining current methodologies, we expect similar results on various
known subclasses of univalent functions. We would like to point out that the figures presented in
this work were generated using MATLAB.
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